Antimicrobial Susceptibility Testing Issues

Sara J. Blosser, Ph.D., D(ABMM)
Director of Clinical Microbiology

Overview

- Physical Testing Issues:
 - Drugs Tested at Your Lab
- Interpretation Issues:
 - AST Breakpoint Revisions
 - Rewriting

The Label "CRE" is defined by:

1) The identity of the drugs tested against the isolate2) The interpretation of these results

Physical Testing Issues: Drugs Tested in Your Lab

What drugs does a microbiology lab test for?

- Decision made by <u>each</u> lab.
- Lab should consult with infectious disease physicians, pharmacy, and infection control, and discuss:
 - Acceptable performance (in vitro, in vivo)
 - Industry standards
 - Costs
 - How to minimize emerging resistance
 - FDA clinical indications for use
 - Professional organization recommendations

CLSI Categories

- **Group A**: Routine, primary testing panels, always reported
- **Group B**: Primary testing, selective reporting
- Group C: Alternative or supplemental testing
- **Group U**: Urine only
- Group O: Generally not routinely tested in the USA
- Group Inv.: Investigational, not approved by the FDA

CLSI Categories, continued (Enterobacteriaceae)

Grouping	Drug
Group A	Ampicillin
	Cefazolin
	Gentamicin
	Tobramycin

CLSI Categories, continued

Grouping	Drug	
Group B	Amikacin	Cefuroxime
	Amoxicillin-	Cefepime
	clavulanate	Cefotetan
	Ampicillin-sulbactam	Cefoxitin
	Ceftazidime-avibactam	Cefotaxime or ceftriaxone
	Ceftolozane-	Ciprofloxacin
	tazobactam	Levofloxacin
	Meropenem-	Doripenem
	vaborbactam	Ertapenem
	Piperacillin-tazobactam	Imipenem
		Meropenem
		Trimethoprim-sulfamethoxazole

CLSI Categories, continued

Grouping	Drug
Group C	Aztreonam Ceftazidime Ceftaroline Chloramphenicol Tetracycline
Group U	Cefazolin Fosfomycin Nitrofurantoin Sulfisoxazole Trimethoprim

Caveats ...

- Certain drugs can't be reported from specific specimen types (ex. CSF, respiratory)
- Not every drug is tested, sometimes surrogates are used
- Some organisms have their own breakpoints (ex. *Salmonella, Shigella*)
- Sometimes a drug can only be tested by one particular test method (which isn't available in every lab)
- Sometimes a drug can only be tested for particular Genera or species:
 - Limited by FDA approvals
 - Limited by data availability (no breakpoints or ECV available for less-common species)

Data in Action, Indiana

How well does AST predict CP-CRE?

- Examined isolates June 1, 2016 June 30, 2018
- n=1381
- Correlation between identifying a carbapenemase (gene) and the isolate being not susceptible (I or R) to carbapenems

	I/R to	I/R to	I/R to
	1 drug	2 drugs	3-4 drugs
Carbapenemase found	52.2%	45.4%	79.7%

What are some other relevant technical issues for you to know related to AST and CRE?

- Colistin and Polymyxin B can <u>only</u> be tested/reported using broth microdilution (e.g. Sensititre[®])
- New Combination Drugs: Ceftazidime-Avibactam, Meropenem-Vaborbactam, Ceftolozane-Tazobactam
 - Lag in when available on automated instrumentation
 - Etest/KB may be available
 - Must verify the new drugs (minimum 30 isolates per CLSI)
 - Difficulty in obtaining isolates (CDC/FDA AR Bank may help)

Interpretation Issues: AST Breakpoints

The Label "CRE" is defined by:

1) The identity of the drugs tested against the isolate2) The interpretation of these results

Category	
Susceptible (S)	 An isolate with an MIC <u>at or below</u> the established susceptible breakpoint. Organisms are <u>usually inhibited</u> Effective concentrations are achievable at the dosage and site of infection. Likely to be clinically effective.
Intermediate (I)	 An isolate with an MIC <u>above</u> the established susceptible breakpoint. Effective concentrations are generally achievable in blood and tissues Organisms <u>may be inhibited</u>, but at a lesser rate than for susceptible isolates Likely to be clinically effective in body sites where drugs are physiologically concentrated or where a higher dosing of drug can be used. May indicate a <i>buffer zone</i> between S and R.
Resistant (R)	 An isolate with an MIC <u>above</u> the established susceptible breakpoint. Effective concentrations are not generally achievable by normal dosing schedules Clinical efficacy has not been reliably demonstrated

Interpretive

Definition

Your AST Report Says: Your Interpretation:

Ceftazidime	>32	R
Ertapenem	1	I
Imipenem	1	S

Drug	Interpretative Category			
	S	I	R	
Ceftazidime	≤4	16	≥32	
Ertapenem	≤0.5	1	≥2	
Imipenem	≤1	2	≥4	

There are Different Breakpoints

- CLSI updates breakpoints as more information becomes available about drugs, bugs, and patient response to antibiotics
- CLSI publishes updates annually (Jan. of each year)
 - At least four significant breakpoint revisions have occurred for Gram Negative organisms since 2010
- Is your lab up-to-date on the current breakpoints?

Some relevant breakpoint revisions for you to know related to CRE:

• 3rd gen. Cephalosporins & Carbapenems (2010, 2012)

Drug	Type of	Previous			C	urren	t
	Change	S	I	R	S	I	R
Cefotaxime	decrease	≤8	16-32	≥64	≤1	2	≥4
Ceftazidime	decrease	≤8	16-32	≥64	≤4	8	≥16
Ceftriaxone	decrease	≤8	16-32	≥64	≤1	2	≥4
Ertapenem	decrease	≤2	4	≥8	≤0.5	1	≥2
Imipenem	decrease	≤4	8	≥16	≤1	2	≥4
Meropenem	decrease	≤4	8	≥16	≤1	2	≥4
Doripenem	decrease	12.00	**new*	*	≤1	2	≥4

How do I know which breakpoints I'm using?

Check the version of the CLSI document in your lab

• New breakpoints = CLSI M100-S29

How do I know which breakpoints I'm using?

- Check your instrument
- At what MIC does your instrument call ertapenem resistant? (one of the four major breakpoint changes)

Drug	Type of	pre-2010		C	urren	t	
	Change	S	I	R	S	I	R
Ertapenem	decrease	≤2	4	≥8	≤0.5	1	≥2
Imipenem	decrease	≤4	8	≥16	≤1	2	≥4
Meropenem	decrease	≤4	8	≥16	≤1	2	≥4
Doripenem	decrease	12,00,00	**new*	*	≤1	2	≥4

What are some other relevant breakpoint revisions for you to know related to CRE?

- Cefepime (2014): Susceptible dose-dependent (SDD)
- Colistin (2017): Epidemiological cutoff values (ECVs)

Do labs really not update their breakpoints?

Ertapenem				
S	I	R		
≤0.5	1	≥2		

- Patient isolate has an ertapenem MIC of 2.0 μg/mL.
- By Current CLSI Breakpoints the isolate is resistant
- Hospital A is using old breakpoints. They report the isolate as **susceptible**.

MAJOR ARTICLE

Carbapenem-Resistant *Enterobacteriaceae* Detection Practices in California: What Are We Missing?

Romney M. Humphries,¹ Janet A. Hindler,¹ Erin Epson,² Sam Horwich-Scholefield,² Loren G. Miller,^{3,4} Job Mendez,³ Jeremias B. Martinez,³ Jacob Sinkowitz,³ Darren Sinkowtiz,⁴ Christina Hershey,⁴ Patricia Marquez,⁵ Sandeep Bhaurla,⁵ Marcelo Moran,⁵ Lindsey Pandes,⁵ Dawn Terashita,⁵ and James A. McKinnell^{3,4,5}

¹Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California—Los Angeles, ²Healthcare-Associated Infections Program, California

Department of Public Health, ³LA BioMed at Harbor—University of California—Los Angeles Medical Center, ⁴David Geffen School of Medicine at the University of California—Los Angeles, and ⁵Acute

Communicable Disease Control Program, Healthcare Outreach Unit, Los Angeles County Department of Public Health, California

- Looked at hospital new-breakpoint implementation
- How long did it take to implement the new breakpoints?
- What was the impact on patient care? What was the impact on public health?

What did they find?

- New breakpoints were used in 72% of labs
- Implementation took 0-68 months (avg. 41 months)
- Not implementing new breakpoints caused labs to report false-susceptibility to carbapenems:

Deve	<u>% Susceptible</u>			
Drug	Old	New		
Ertapenem	8.9	< 1		
Imipenem	18.6	< 1		
Meropenem	18.6	< 1		

Why were the breakpoints revised?

- Review of data:
 - PK-PD
 - Clinical data
 - MIC distributions (to include carbapenemase-producing strains, which were really new at the time)
- If a lab implemented the updated breakpoints, there was no longer a requirement that the lab do ESBL or carbapenemase testing for *clinical* purposes, it was still encouraged for *epidemiological* purposes
- If the lab has not implemented the revised breakpoints, the lab is *required* to perform ESBL and carbapenemase testing if the strain has an MIC of ≥2 µg/mL to any carbapenem

Interpretation Issues: Rewriting

The Label "CRE" is defined by:

1) The identity of the drugs tested against the isolate2) The interpretation of these results

So do we still need to re-write drugs based on carbapenemase or ESBL results?

- It was also <u>no longer recommended</u> that results be rewritten based on findings of an ESBL or carbapenem.
- This is a practice that still occurs today in some laboratory, and can significantly impact:
 - The number of antibiotics available to treat these infections!
 - Accuracy of public health data

Does this really happen?

Ertapenem				
S	Ι	R		
≤0.5	1	≥2		

- Patient isolate has an ertapenem MIC of ≤0.5 µg/mL.
- By Current CLSI Breakpoints the isolate is susceptible.
- Hospital A is using old breakpoints and guidelines. As the isolate is an ESBL-producer, they report the isolate as **resistant**.

What is the impact?

- Decreases the number of drugs available to:
 - Infectious Disease physician
 - Pharmacy
 - Infection Prevention
 - Public Health
- All pan-intermediate/intermediate isolates (by drugs tested at the clinical- and public health-lab) are investigated.

Drug	MIC	Interpretation
Ampicillin	<=2	*R
Ampicillin/Sulbactam	<=2	*R
Piperacillin/Tazobactam	<=4	*R
Cefazolin	>=64	R
Cefoxitin	>=64	R
Ceftazidime	2	*R
Ceftriaxone	>=64	R
Cefepime	2	*R
Meropenem	>=16	R

Isolate was determined <u>not</u> to be a carbapenemase producer by the PHL.

Conclusion

- **Knowledge is Power**: Know what methods your lab uses for AST, which drugs are tested, which drugs are reported, and why those decisions were made.
- Make a Friend: Realize that unless AST is one of your passions, that this field changes too rapidly to know every nuance; make a friend (lab manager or an ID doc?) that is familiar with these nuances.
- Embrace Change: AST recommendations change annually (usually based on increasing understanding of case management, new drugs, or changing epidemiology).

Questions?

Contact Information:

- sblosser@isdh.in.gov
- 317-921-5894

